

Soil Structure

The arrangement of primary soil particles into aggregates (secondary units or peds).

- •influences water holding capacity, soil aeration
- varies with depth
- •influenced by soil organic matter, texture, compaction, weather
- •easily destroyed, difficult to build
- •influences nutrient availability

Bulk Density

The weight of soil per unit volume (g/cm³, lb/ft³, t/m³)

- •depends on both texture & structure
- •clay soils can be heavier or lighter than sandy soils

E_

The Ideal Soil for Crop Production • Medium texture and organic matter for air and water movement • Sufficient clay to hold soil moisture reserves • Deep, permeable subsoil with adequate fertility levels • Environment for roots to go deep for moisture and nutrients

- Improves physical condition
- Increases water infiltration
- Improves soil tilth
- Decreases erosion losses
- Contains plant nutrients
- Increases CEC

Tillage x Starter
Alma 2003 was one of 9 site-years
8 of the 9 showed far smaller responses
 5 more showed starter NP benefits in no-till but not in plowed soil
3 with high soil tests showed no response to applied fertilizer
€

Test	Extractants	pН	Ratio, solution:soil	Extraction time, mir
Olsen P	0.5M sodium bicarbonate	8.5	20	30
Bray P1	0.03M ammonium fluoride + 0.025M hydrochloric acid	2.5	7	1
Mehlich-3 P	0.2M acetic acid, 0.25M ammonium nitrate, 0.015M ammonium fluoride, 0.13M nitric acid, 0.001M EDTA	2.5	10	5
Colwell P	0.5M sodium bicarbonate	8.5	100	960
Morgan	0.54 M acetic acid + 0.72 M sodium acetate	4.8	5	15
Exchange resins	Mixture of anionic and cationic resins			

Phosphorus							
Ammonum							
Bicarbonate-DTPA	0-1	2-3	4-5	6-7	8-9	10-11	12-15
Bray and Kurtz P1	0-5	6-10	11-15	16-20	21-25	26-30	31-40
Bray and Kurtz P2	0-9	10-18	19-27	28-35	36-40	41-45	46-55
Kelowna, Modified	0-5	6-10	11-15	16-20	21-25	26-30	31-40
Lancaster P	0-5	6-10	11-15	16-20	21-25	26-30	31-40
Mehlich 1 P	0-3	4-6	7-9	10-12	13-15	16-18	19-24
Mehlich 2 P	0-5	6-10	11-15	16-20	21-25	26-30	31-40
Mehlich 3 P (colorimetric)	0-5	6-10	11-15	16-20	21-25	26-30	31-40
Mehlich 3 P (ICP)	0-9	10-18	19-27	28-35	36-40	41-45	46-55
Morgan, Cornell		0-0.9	1.0-2.3	2.4-3.6	3.7-4.4	4.5-5.3	5,4-6.5
Morgan, Modified Olsen P	0-2.5	2.6-3.4	3.5-4.9	5.0-6.3	6,4-7.1	7.2-8.0	8.1-9.
(sodium bicarbonate)	0-3	4-7	8-11	12-15	16-19	20-23	24-30
*These equivalencies a appropriate rates to ap		recomn	nended f	or the pu	rpose of	determi	ning

Certified Crop Adviser Specialties

- Established by the fertilizer industry to support research on 4R sustainability impact across North America – aiming for \$7M over 5 years.
- Meta-analysis: 5 projects, 2014-2015.
- Measurement: 4 projects, 2014-2019.
- $\bullet \ \text{For additional information:} \ \underline{www.ipni.net}$

Summary - 4R Practices

- Implement the principles to optimize management
- Determine appropriate sustainability goals
- Choose metrics to monitor progress
- Manage by nutrient management plan
- Track nutrient balances
- Connect your metrics to a sustainability reporting system

